It’s a standard technique while proving inequalities, to substitute a fraction with a complementary one in a sense that the sum of these fractions is $1$.
In this case $$\frac{a-bc}{a+bc}= \frac{a+bc-2bc}{a+bc}= \frac{a+bc}{a+bc}- \frac{2bc}{a+bc}=1- \frac{2bc}{a+bc}.$$
So the initial inequality turns into
$$1- \frac{2bc}{a+bc}+1- \frac{2ac}{b+ac}+1- \frac{2ab}{c+ab}\le\frac32$$
$$- \frac{2bc}{a+bc}- \frac{2ac}{b+ac}- \frac{2ab}{c+ab}\le-\frac32$$
$$ \frac{2bc}{a+bc}+\frac{2ac}{b+ac}+ \frac{2ab}{c+ab}\ge\frac32$$
$$ \frac{bc}{a+bc}+\frac{ac}{b+ac}+ \frac{ab}{c+ab}\ge\frac34.$$